Site mapping and characterization of O-glycan structures on alpha-dystroglycan isolated from rabbit skeletal muscle.
نویسندگان
چکیده
The main extracellular matrix binding component of the dystrophin-glycoprotein complex, alpha-dystroglycan (alpha-DG), which was originally isolated from rabbit skeletal muscle, is an extensively O-glycosylated protein. Previous studies have shown alpha-DG to be modified by both O-GalNAc- and O-mannose-initiated glycan structures. O-Mannosylation, which accounts for up to 30% of the reported O-linked structures in certain tissues, has been rarely observed on mammalian proteins. Mutations in multiple genes encoding defined or putative glycosyltransferases involved in O-mannosylation are causal for various forms of congenital muscular dystrophy. Here, we explore the glycosylation of purified rabbit skeletal muscle alpha-DG in detail. Using tandem mass spectrometry approaches, we identify 4 O-mannose-initiated and 17 O-GalNAc-initiated structures on alpha-DG isolated from rabbit skeletal muscle. Additionally, we demonstrate the use of tandem mass spectrometry-based workflows to directly analyze glycopeptides generated from the purified protein. By combining glycomics and tandem mass spectrometry analysis of 91 glycopeptides from alpha-DG, we were able to assign 21 different residues as being modified by O-glycosylation with differing degrees of microheterogeneity; 9 sites of O-mannosylation and 14 sites of O-GalNAcylation were observed with only two sites definitively exhibiting occupancy by either type of glycan. The distribution of identified sites of O-mannosylation suggests a limited role for local primary sequence in dictating sites of attachment.
منابع مشابه
Development of Rabbit Monoclonal Antibodies for Detection of Alpha-Dystroglycan in Normal and Dystrophic Tissue
Alpha-dystroglycan requires a rare O-mannose glycan modification to form its binding epitope for extracellular matrix proteins such as laminin. This functional glycan is disrupted in a cohort of muscular dystrophies, the secondary dystroglycanopathies, and is abnormal in some metastatic cancers. The most commonly used reagent for detection of alpha-dystroglycan is mouse monoclonal antibody IIH6...
متن کاملDystroglycan glycosylation and its role in matrix binding in skeletal muscle.
Dystroglycan is an essential component of the dystrophin-glycoprotein complex. Three glycan sequencing studies have identified O-linked mannose chains, including NeuAcalpha 2,3Galbeta 1,4GlcNAcbeta 1,2Manalpha-O, on alpha dystroglycan. Chemical deglycosylation of alpha dystroglycan, antibody blocking studies, and glycan blocking studies all suggest that the O-linked glycans on alpha dystroglyca...
متن کامل[Finding of O-mannosyl glycan in mammals and congenital muscular dystrophies due to glycosylation defects].
Most proteins within living organisms contain glycans. Glycan structures can modulate the biological properties and function of glycoproteins. Developments in glycobiology have revealed a new type of glycosidic linkage to the peptide portion, the O-mannosyl linkage in mammals, although heretofore it had been thought to be specific to yeast. One of the best known O-mannosyl-modified glycoprotein...
متن کاملDifferential Vicia villosa agglutinin reactivity identifies three distinct dystroglycan complexes in skeletal muscle.
We present evidence for the expression of three alpha-dystroglycan glycoforms in skeletal muscle cells, including two minor glycoforms marked by either patent or latent reactivity with the N-acetylgalactosamine-specific lectin Vicia villosa agglutinin. Both minor glycoforms co-isolated with beta-dystroglycan, but not with other dystrophin/utrophin-glycoprotein complex components, suggesting tha...
متن کاملAberrant glycosylation of alpha-dystroglycan causes defective binding of laminin in the muscle of chicken muscular dystrophy.
Dystroglycan is a central component of dystrophin-glycoprotein complex that links extracellular matrix and cytoskeleton in skeletal muscle. Although dystrophic chicken is well established as an animal model of human muscular dystrophy, the pathomechanism leading to muscular degeneration remains unknown. We show here that glycosylation and laminin-binding activity of alpha-dystroglycan (alpha-DG...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 285 32 شماره
صفحات -
تاریخ انتشار 2010